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Heat transfer on a plate beneath an external uniform shear flow
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Abstract

The thermal characteristics of the flow over a semi-infinite flat plate driven by a uniform shear in the far field are investigated and c
to those of the corresponding classical Blasius flow problem. Similarity solutions are given in an exact analytic form in terms of the in
gamma function and the confluent hypergeometric function. Substantial differences are found concerning the scaling behavior o
heat flux for prescribed constant wall temperatureTw, as well as for the wall temperature distribution for prescribed constant heat fluqw,
both with respect to the wall coordinatex and the Prandtl numberPr. While for the Blasius flow different scaling laws hold for small a
large values ofPr, in the uniform shear flow problem a universal scaling law is found for allPr.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Shear driven flows, like the wall driven Couette flow, t
wind-driven Eckman flow, the two-fluid parallel shear flo
developed by Lock [1], etc. belong to the classical top
of fluid mechanics. Due to their wide breath of techni
and environmental applications [2–4] the general rese
interest in shear driven flows [5–8] and their heat tran
characteristics [9,10] still remains a viable area of resea

The aim of the present investigation is to analyze
heat transfer characteristics on a semi-infinite flat plate
to an uniform shear flowu = βy, for prescribed condition
of wall temperature and heat flux compatible with a s
ilarity analysis, and compare results with those availa
for the classical Blasius results for a uniform outer stre
u = U∞. It is important to emphasize from the very b
ginning that this comparison concerns two fundament
different physical flows. Indeed, whereas the classical B
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sius flow is driven over the plate by aninviscid outer flow of
irrotational velocity U = U(x) = const, our uniform shea
flow is driven by aviscous outer flow ofrotational velocity
U = U(y) = u(y) = βy. Hereβ is the uniform strain rate
andy is the plate normal coordinate; see Fig. 1. The unifo
shear which drives the flow isτ = µ(du/dy) = µβ = const.
Thus, one immediately recognizes that this uniform sh
flow in fact is a Couette flow extended to the whole spa
The plane surface which drives this extended Couette
moves (in the mathematical model) with infinite veloc
(u = βy → ∞ asy → ∞) at infinite distance from the fixe
plate on which the temperature boundary layer is form
(and which is then compared to the temperature boun

Fig. 1. Sketch of the plate, the coordinate system and the boundary c
tions.
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Nomenclature

C1,C2 integration constants
f (η) similarity streamfunction variable
g(η) similarity temperature variable
k heat conductivity
L reference length
m temperature power-law exponent
Nu Nusselt number
Pr Prandtl number
q heat flux
t dummy variable
T temperature
T∗ reference temperature
u,v velocity components
x, y Cartesian coordinates
X dimensionless wall coordinate

Greek symbols

α thermal diffusivity

β strain rate
δT edge of temperature boundary layer
γ (a, z) incomplete gamma function
�(a) Gamma function
µ dynamic viscosity
η independent similarity variable
θ modified similarity temperature variable
ν kinematic viscosity
ξ modified independent similarity variable
ψ streamfunction

Subscripts

T transverse
w wall conditions for allx > 0
∞ far field condition,y → ∞
Superscripts

prime derivative with respect toη or ξ
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layer associated with the Blasius flow). In a real exp
mental set up, however, thisy = ∞ means in fact (as it is
interpreted usually in the boundary layer theory) the ou
edgeδT of the temperature boundary layer, such that
plate which drives our extended Couette flow moves (in
corresponding physical experiment) with the finite veloc
u = βδT .

2. Governing equations and boundary conditions

Consider planar shear flow over a semi-infinite insula
flat plate as sketched in Fig. 1. Using Cartesian coordin
(x, y) with corresponding velocities(u, v), the plate leading
edge is fixed atx = 0 and we are interested in the temp
ature fieldT and streamwise velocityu for x � 0 when the
exterior flow isu = βy, whereβ is a constant strain rate. Ou
basis of analysis is the Prandtl boundary layer equation
incompressible, zero pressure gradient flow

ux + vy = 0 (1a)

uux + vuy = νuyy (1b)

uTx + vTy = αTyy (1c)

in which ν is the kinematic fluid viscosity andα is the ther-
mal diffusivity, both assumed constant. Subscriptsx andy

denote partial derivatives with respect to those variables.
plate is impermeable and the no-slip boundary condition
plies. We are interested in analyzing flows for which eit
the wall temperature is prescribed where one seeks fo
wall heat transfer, or the opposite situation where the h
transfer is prescribed and one seeks the variation of the
temperature. For both problems the boundary conditions
given by
u = 0 (2a)

v = 0 (y = 0, x � 0) (2b)

with either a prescribed constant wall temperature or a c
stant wall heat flux

T (x,0) = Tw or (2c)

q(x,0) = −kTy |y=0 = qw (2d)

andk is the fluid thermal conductivity.
In the far field the uniform shear and free stream temp

ature must be recovered and thus

u → βy (3a)

T → T∞ (y → ∞) (3b)

Both problems of interest, given by boundary conditio
(2c) and (2d), are embedded in a larger family of soluti
whereby the wall temperature varies as a power-law inx,
and hence we use this as our starting point for analysis in
following section.

3. Similarity transformation

Since the flow is incompressible and two-dimensio
it is convenient to introduce a streamfunction(u, v) =
(ψy,−ψx) and write the governing equations and bou
ary conditions as

ψyψxy − ψxψyy = νψyyy (4a)

ψy = 0 (4b)

ψx = 0 (y = 0) (4c)

ψy → βy (y → ∞) (4d)
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ψyTx − ψxTy = αTyy (5a)

T (x,0) = Tw or (5b)

q(x,0) = −kTy |y=0 = qw (5c)

T → T∞ (y → ∞) (5d)

A simple analysis shows (see, e.g. [2]) that the appro
ate similarity variables for this problem with length sca
with L = (ν/β)1/2 and streamfunction scaled withν may be
posited in the form

ψ(x, y) = ν

(
x

L

)2/3

f (η) (6a)

T (x, y) = T∞ + T∗
(

x

L

)m

g(η) (6b)

η =
(

x

L

)−1/3
y

L
(6c)

whereT∗ is a reference temperature to be specified be
Inserting (6a,c) into (4) yields the boundary-value probl
for the flow variable

3f ′′′ + 2ff ′′ − f ′2 = 0 (7a)

f (0) = 0 (7b)

f ′(0) = 0 (7c)

f ′(η) → η (η → ∞) (7d)

and a coupled boundary-value problem for the similar te
perature field

3

Pr
g′′ + 2fg′ − 3mf ′g = 0 (8a)

g(0) = 0 or (8b)

g′(0) = −1 (8c)

g(η) → 0 (η → ∞) (8d)

wherePr = ν/κ is the Prandtl number.
Clearly, f (η) = η2/2 satisfies both Eq. (7a) and its a

tendant boundary conditions (7b–d) and thus represen
solution uniformly valid for allη. Insertingf (η) and its
derivatives into Eq. (8a) yields the similarity equation
the temperature field, namely

3

Pr
g′′ + η2g′ − 3mηg = 0 (9)

In this formulation the dimensional wall heat flux is giv
by

qw(x) = −kT∗
L

(
x

L

)m−1/3

g′(0) (10)

Thus the exponents of interest arem = 0 for a prescribed
constant wall temperature, andm = 1/3 for a prescribed
constant wall heat flux. These cases will be considered
arately in the following sections.
-

4. Constant wall temperature

Settingm = 0 in governing equation (9) and using boun
ary conditions (8b,d), we obtain the boundary-value prob
corresponding to shear flow over a flat plate with unifo
wall temperature

3

Pr
g′′ + η2g′ = 0 (11a)

g(0) = 1 (11b)

g(∞) = 0 (11c)

Separating variables in (11a) and performing the neces
quadratures satisfying conditions (11b,c) yields immedia
the solution

g(η) = 1− 1

�(1/3)

z∫
0

t−2/3e−t dt = 1− γ (1/3, z)

�(1/3)
(12a)

where

z = Pr

9
η3 (12b)

and γ (a, z) is the incomplete gamma function (cf. [1
Chapter 6], [12, Chapter 8]).

Evaluation of the derivative of (12a) readily gives

−g′(0) = (3Pr)1/3

�(1/3)
= 0.538366Pr1/3 (13)

In Eq. (10) we have in this caseT∗ = Tw − T∞ and thus
arrive at the dimensional wall heat flux

qw(x) = k(Tw − T∞)

L

(3Pr)1/3

�(1/3)

(
x

L

)−1/3

(14)

Similar temperature profilesg(η) at the selected valuesPr =
0.1,0.3,1 and 5 are displayed in Fig. 2.

It is interesting to note that the present boundary-va
problem (11) is encountered in several contexts in fluid
chanics in the same or in a slightly rescaled form. Thu

Fig. 2. Similar temperature profilesg(η) according to Eq. (12a) for selecte
values of the Prandtl number (as indicated) when a constant wall tem
tureTw is prescribed.



E. Magyari, P.D. Weidman / International Journal of Thermal Sciences 45 (2006) 110–115 113

aly-
lem

of
ay
ow
ich

m
ber
ee
ary
ed

-

ven
ous

g
lue
ith

ng

o-
see

d
t flux

b-

to

f

e

eat

(or
ten

ca-
the
also arises in a three-dimensional boundary layer flow an
sis, as reported by Weidman [6]. In that situation the prob
is to determine, for a given streamwise uniform shear flow
strain rateβ, possible fully-developed cross flows that m
exist. One transverse flow is a different uniform shear fl
of strain rateβT . However, a second cross flow exists wh
is exactly that given by solution (12) above, but withPr re-
placed byβ/ν. Furthermore, the boundary-value proble
(11) also arises in connection with the large Prandtl num
(Pr → ∞) heat transfer in different wall bounded flows (s
Schlichting and Gersten [2, Section 9.3]). These bound
layer flows can be driven over the flat plate with prescrib
temperature distributionTw = Tw(x) either by an outer in
viscid (potential) flow of velocityU = U(x) (Blasius flow,
stagnation point flow, etc.) or, they are momentum dri
submerged flows (heated wall jets) in a quiescent visc
fluid [2].

5. Constant heat flux

Now settingm = 1/3 in governing equation (9) and usin
boundary conditions (8c,d), we obtain the boundary-va
problem corresponding to shear flow over a flat plate w
uniform wall heat flux
3

Pr
g′′ + η2g′ − ηg = 0 (15a)

g′(0) = −1 (15b)

g(∞) = 0 (15c)

The Prandtl number may be eliminated through the scali

g(η) =
(

3

Pr

)1/3

θ(ξ) (16a)

η =
(

3

Pr

)1/3

ξ (16b)

to obtain

θ ′′ + ξ2θ ′ − ξθ = 0 (17a)

θ ′(0) = −1 (17b)

θ(∞) = 0 (17c)

Finally, the change of independent variableξ = −(3t)1/3

furnishes the boundary value problem

t
d2θ

dt2
+

(
2

3
− t

)
dθ

dt
+ 1

3
θ = 0 (18a)

lim
t→0

{
(3t)2/3 dθ

dt

}
= 1 (18b)

lim
t→−∞ θ = 0 (18c)

which is the canonical form for identifying the general s
lutions in terms of confluent hypergeometric functions (
[11, Chapter 13], [12, Chapter 9])

θ(ξ) = C1M

(
−1

,
2
, t

)
+ C2t

1/3 (19)

3 3
Fig. 3. Similar temperature profilesg(η) according to Eq. (21) for selecte
values of the Prandtl number (as indicated) when a constant wall hea
qw is prescribed.

Satisfying the limit condition (18b) givesC2, and application
of the far field condition (18c) givesC1, namely

C1 = 31/3

�(2/3)
(20a)

C2 = 31/3 (20b)

Reverting back to the original similarity variables, one o
tains the desired solution

g(η) = −η + 32/3

�(2/3)
Pr−1/3M

(
−1

3
,

2

3
,−Pr

9
η3

)
(21)

From this one finds the similar wall temperature is equal

g(0) = 32/3

�(2/3)
Pr−1/3 = 1.536117Pr−1/3 (22)

Sample temperature profilesg(η) at the selected values o
Pr are presented in Fig. 3. In Eq. (10) we now haveT∗ =
qwL/k whereqw is the specified wall heat flux. Thus th
corresponding dimensional temperature field is

T (x, y) = T∞ + qwL

k

(
x

L

)1/3

g(η) (23)

with g(η) given by Eq. (21). For an imposed constant h
flux, the plate temperature varies as

Tw(x) = T∞ + qwL

k

32/3

�(2/3)
Pr−1/3

(
x

L

)1/3

(24)

6. Discussion and conclusions

The thermal characteristics of Blasius flow over a hot
cold) flat plate are well known (see Schlichting and Gers
[2, Section 9.3]) and are summarized forTw = const and
qw = const in Table 1 below. At the same downstream lo
tion, these classical results are compared in Table 1 with
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Table 1
Comparison of the thermal characteristics of the uniform shear flow and Blasius flow for constant
wall temperature and heat flux, respectively

Uniform shear flow
(present paper)
Lshear= (ν/β)1/2

Blasius flow
(Ref. [2])
LBlasius= ν/U∞

Constant temperature boundary conditions:Tw = const

Nu = qw(x)L

k(Tw − T∞)
= 31/3

�(1/3)
Pr1/3

(
x

L

)−1/3

−g′(0)

(
x

L

)−1/2
;

−g′(0) =
{√

2
π Pr1/2, Pr → 0

0.479Pr1/3, Pr → ∞
Constant heat flux boundary conditions:qw = const

1

Nu
= k(Tw(x) − T∞)

qwL
= 32/3

�(2/3)
Pr−1/3

(
x

L

)1/3

g(0)

(
x

L

)1/2
;

g(0) =
{√

2
π Pr−1/2, Pr → 0

1.524Pr−1/3, Pr → ∞
r for
hed

the

ear

res
rent
flow

r

e
nat
nse
one

the
fer-
ady

nt
s
ity

the
at
ra-
cal
l dif-

s
l-
ing
e

t
r
e is
e
rly
all

t

for
r in

ng
Fig. 4. Comparison of the Prandtl number variation of Nusselt numbe
uniform shear boundary layer flow (solid lines) and Blasius flow (das
lines) with prescribed constant wall temperatureTw at three downstream
locationsX = 0.1,0.5 and 10 when the dimensionless length scales for
two problems are equal:LBlasius= Lshearas explained in the text.

corresponding thermal characteristics of the uniform sh
flow presented in Sections 4 and 5 above.

It is important to emphasize again that Table 1 compa
the heat transfer characteristics of fundamentally diffe
physical flows. Indeed, whereas the classical Blasius
is driven over the plate by aninviscid outer flow of ir-
rotational velocity U = U(x) = const, our uniform shea
flow is driven by aviscous outer flow of rotational veloc-
ity U = U(y) = βy. The only common physical featur
of these two flows is that neither of them possesses a
ural characteristic length. Hence, it does not make se
to compare these two flows with each other, unless
compares them on the same length scaleL. The choice of
the length scale is required in the present context by
definition of the Nusselt number (see Table 1). The re
ence length chosen for the Blasius flow and that alre
-

chosen for our shear driven flow areLBlasius= ν/U∞ and
Lshear= √

ν/β, respectively. In this way, the requireme
LBlasius= Lshearimpliesβ = U2∞/ν. Therefore, the Blasiu
flow is compared in Table 1 with the shear flow of veloc
u = βy = (U2∞/ν)y.

For constant prescribed wall temperatureTw, the suit-
able dimensionless quantity for a physical comparison is
Nusselt numberNu, while for constant prescribed wall he
flux qw the physically relevant quantity is the wall tempe
ture distribution or, in a dimensionless form, the recipro
Nusselt number (see Table 1). In both cases essentia
ferences occur in thex-dependence as well as in thePr
scaling ofNu and 1/Nu, respectively. While in the Blasiu
caseNu and 1/Nu scale differently for small and large va
ues ofPr, in the case of uniform shear a universal scal
law, Pr1/3 andPr−1/3, respectively, is found. This is mad
clear in Fig. 4 whereNu is plotted as a function ofPr for
three downstream positionsX = x/L for both the Blasius
and shear flow in the caseTw = const (Table 1). Note tha
near the leading edge atX = 0.1 the Blasius heat transfe
is greater than that for the shear flow, while the revers
true far downstream atX = 10. At the intermediate valu
X = 0.5 the Nusselt numbers for the two flows are nea
equal for all vales of the Prandtl number. However, a sm
difference appears at lowPr as it must, owing to the differen
Prandtl number scalingsPr−1/3 for the uniform shear flow
andPr−1/2 for the Blasius flow.
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