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Heat transfer on a plate beneath an external uniform shear flow
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Abstract

The thermal characteristics of the flow over a semi-infinite flat plate driven by a uniform shear in the far field are investigated and compared
to those of the corresponding classical Blasius flow problem. Similarity solutions are given in an exact analytic form in terms of the incomplete
gamma function and the confluent hypergeometric function. Substantial differences are found concerning the scaling behavior of the wal
heat flux for prescribed constant wall temperatfige as well as for the wall temperature distribution for prescribed constant heat,flux
both with respect to the wall coordinateand the Prandtl numbétr. While for the Blasius flow different scaling laws hold for small and
large values oPr, in the uniform shear flow problem a universal scaling law is found fdpall
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction sius flow is driven over the plate by amviscid outer flow of
irrotational velocity U = U (x) = const, our uniform shear
Shear driven flows, like the wall driven Couette flow, the flow is driven by aviscous outer flow ofrotational velocity
wind-driven Eckman flow, the two-fluid parallel shear flow U = U(y) = u(y) = By. Hereg is the uniform strain rate
developed by Lock [1], etc. belong to the classical topics andy is the plate normal coordinate; see Fig. 1. The uniform
of fluid mechanics. Due to their wide breath of technical shear which drives the flow is= j.(du/dy) = up = const.
and environmental applications [2—4] the general research Thus, one immediately recognizes that this uniform shear
interest in shear driven flows [5-8] and their heat transfer flow in fact is a Couette flow extended to the whole space.
characteristics [9,10] still remains a viable area of research. 1h€ Plane surface which drives this extended Couette flow
The aim of the present investigation is to analyze the moves (in the mathematlcgl _m_ode_l) with infinite ve_locny
heat transfer characteristics on a semi-infinite flat plate due(u =py— oo asy — c0) atinfinite distance from the fixed
to an uniform shear flowt = By, for prescribed conditions plate on Wh.ICh the temperature boundary layer is formed
of wall temperature and heat flux compatible with a sim- (and which is then compared to the temperature boundary

ilarity analysis, and compare results with those available

y
for the classical Blasius results for a uniform outer stream | . S
o ) ncoming y—o: u=p0y, T=1,
u = Uy. It is important to emphasize from the very be- shear
ginning that this comparison concerns two fundamentally  flow:
. . . ) u=py
different physical flows. Indeed, whereas the classical Bla r-T, T~ const or T, = const
5 X
0 Impermeable plate
* Corresponding author. Tel.: +01 6332867; fax: +01 6331041. Fig. 1. Sketch of the plate, the coordinate system and the boundary condi-
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Nomenclature

C1, C2 integration constants B strain rate

f(n)  similarity streamfunction variable S edge of temperature boundary layer

g(n)  similarity temperature variable y(a,z) incomplete gamma function

k heat conductivity I'(@) Gamma function

L reference length " dynamic viscosity

m temperature power-law exponent n independent similarity variable

Nu Nusselt number ] modified similarity temperature variable

Pr Prandtl number v kinematic viscosity

q heat flux & modified independent similarity variable

t dummy variable v streamfunction

T temperature .

T reference temperature Subscripts

u,v velocity components T transverse

X,y Cartesian coordinates w wall conditions for allx > 0

X dimensionless wall coordinate 00 far field condition,y — oo

Greek symbols Superscripts

o thermal diffusivity prime derivative with respect tg or &
layer associated with the Blasius flow). In a real experi- u =0 (2a)
mental set up, however, this= co means in fact (as it is v=0 (y=0, x>0) (2b)

interpreted usually in the boundary layer theory) the outer
edged; of the temperature boundary layer, such that the with either a prescribed constant wall temperature or a con-
plate which drives our extended Couette flow moves (in the stant wall heat flux
corresponding physical experiment) with the finite velocit
_ P gphy P ) y T(x,00=T, or (2¢c)
u= ,BST.
q(x, 0)=_kTy|y=0=CIw (2d)

andk is the fluid thermal conductivity.
In the far field the uniform shear and free stream temper-

. o ature must be recovered and thus
Consider planar shear flow over a semi-infinite insulated

flat plate as sketched in Fig. 1. Using Cartesian coordinates, — gy (3a)
(x, y) with corresponding velocitie@:, v), the plate leading
edge is fixed akt = 0 and we are interested in the temper-
ature fieldT" and streamwise velocity for x > 0 when the Both problems of interest, given by boundary conditions
exterior flow isu = By, whereg is a constant strain rate. Our  (2c) and (2d), are embedded in a larger family of solutions
basis of analysis is the Prandtl boundary layer equations forwhereby the wall temperature varies as a power-law,in
incompressible, zero pressure gradient flow and hence we use this as our starting point for analysis in the
following section.

2. Governing equations and boundary conditions

T—>Tx (y—00) (3b)

uy+vy,=0 (1a)

Uiy + VUy = Vityy (1b)

uTe +vTy = aT)y, (1c) 3. Similarity transfor mation

in which v is the kinematic fluid viscosity and is the ther- Since the flow is incompressible and two-dimensional
mal diffusivity, both assumed constant. Subscriptand y it is convenient to introduce a streamfuncti@n, v) =

denote partial derivatives with respect to those variables. The(y, v} and write the governing equations and bound-
plate is impermeable and the no-slip boundary condition ap- vy conditions as
plies. We are interested in analyzing flows for which either
the wall temperature is prescribed where one seeks for theyy ¥y — ¥y = vifyyy (4a)
wall heat transfer, or the opposite situation where the heat,;, _ g (4b)
. . .- y —
transfer is prescribed and one seeks the variation of the wall -
temperature. For both problems the boundary conditions are¥x=0 (b=0 (4c)

given by Yy — By (y —> 00) (4d)
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UyTy — YTy = aTyy (5a)
T(x,00=T, or (5b)
q(x,0)= _kTy |y:0 =dqw (SC)
T—>Tx (y—o00) (5d)

A simple analysis shows (see, e.g. [2]) that the appropri-
ate similarity variables for this problem with length scaled
with L = (v/8)¥/2 and streamfunction scaled withmay be

posited in the form
£\ /3
v =v(3) s (62
T(x,y)=Too+T*(%) g(n) (6b)
X\ Y3y
n= <Z> a (6¢)

whereT, is a reference temperature to be specified below.
Inserting (6a,c) into (4) yields the boundary-value problem
for the flow variable

3" +2ff" - f?=0 (72)
fO=0 (7b)
f@=0 (7c)
fly—n (00 (7d)

and a coupled boundary-value problem for the similar tem-
perature field

o +2f¢ ~3mf'g =0 (82)
g(®=0 or (8b)
g0)=-1 (8c)
gm —0 (n— o0) (8d)

wherePr = v/k is the Prandtl number.
Clearly, f(n) = n?/2 satisfies both Eq. (7a) and its at-

tendant boundary conditions (7b—d) and thus represents a

solution uniformly valid for alln. Inserting f(n) and its
derivatives into Eq. (8a) yields the similarity equation for
the temperature field, namely

3 " 2 7
— -3 =0 9
B8 Tng —3mng 9)
In this formulation the dimensional wall heat flux is given
by

kT, { x m—1/3
qu(x) = _T* <z) g/(O) (10)

Thus the exponents of interest are= 0 for a prescribed
constant wall temperature, amd = 1/3 for a prescribed
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4. Constant wall temperature

Settingm = 0 in governing equation (9) and using bound-
ary conditions (8b,d), we obtain the boundary-value problem
corresponding to shear flow over a flat plate with uniform
wall temperature

3

58" +nPg =0 (11a)
g0 =1 (11b)
g(c0)=0 (11c)

Separating variables in (11a) and performing the necessary
guadratures satisfying conditions (11b,c) yields immediately
the solution

Z
.1 23 1y _ 4 Y(1/3.2)
gmm=1 F(1/3)/t e 'dr=1 T3 (12a)
0
where
Z=%n3 (12b)

and y(a,z) is the incomplete gamma function (cf. [11,
Chapter 6], [12, Chapter 8]).
Evaluation of the derivative of (12a) readily gives

o (3PN
~¢O0="Tas7

In Eq. (10) we have in this casi, = T, — To, and thus
arrive at the dimensional wall heat flux
X

k(T — Tno) (3P)Y/3 ~1/3
L I(1/3) (Z)

Similar temperature profileg(n) at the selected valués =
0.1,0.3,1 and 5 are displayed in Fig. 2.

It is interesting to note that the present boundary-value
problem (11) is encountered in several contexts in fluid me-
chanics in the same or in a slightly rescaled form. Thus it

=0.538366°r/3 (13)

(14)

qu(x) =

1

0.1
0.3

1

Fig. 2. Similar temperature profilggn) according to Eq. (12a) for selected

constant wall heat flux. These cases will be considered sep-values of the Prandtl number (as indicated) when a constant wall tempera-

arately in the following sections.

ture Ty, is prescribed.
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also arises in a three-dimensional boundary layer flow analy-
sis, as reported by Weidman [6]. In that situation the problem
is to determine, for a given streamwise uniform shear flow of
strain rateg, possible fully-developed cross flows that may
exist. One transverse flow is a different uniform shear flow
of strain rate8;. However, a second cross flow exists which
is exactly that given by solution (12) above, but wirhre-
placed byg/v. Furthermore, the boundary-value problem
(11) also arises in connection with the large Prandtl number
(Pr — o0) heat transfer in different wall bounded flows (see
Schlichting and Gersten [2, Section 9.3]). These boundary
layer flows can be driven over the flat plate with prescribed
temperature distributioff,, = T,,(x) either by an outer in-
viscid (potential) flow of velocityy = U (x) (Blasius flow,
stagnation point flow, etc.) or, they are momentum driven
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3.5
3
2.5

g(n) 2

15

submerged flows (heated wall jets) in a quiescent viscousFig. 3. Similar temperature profilggn) according to Eqg. (21) for selected

fluid [2].

5. Constant heat flux

Now settingm = 1/3 in governing equation (9) and using

boundary conditions (8c,d), we obtain the boundary-value

problem corresponding to shear flow over a flat plate with

uniform wall heat flux

%g” +1%g —ng=0 (15a)

g0 =-1 (15b)

g(c0) =0 (15¢)

The Prandtl number may be eliminated through the scaling

3\1/3

g(m = (ﬁ) 0(&) (16a)
3\1/3

= (3) ¢ (asb)

to obtain

0" +£%0' —£60 =0 (17a)

0'(0)=-1 (17b)

0(00) =0 (17c)

Finally, the change of independent varialjle= —(3r)1/3
furnishes the boundary value problem

d%e 2 o 1
t@—i_(é_t)d_[—i_ée:o (18&)
do
: 2/399 | _
i ] =2 as)
lim 6=0 (18¢c)
t——00

which is the canonical form for identifying the general so-
lutions in terms of confluent hypergeometric functions (see
[11, Chapter 13], [12, Chapter 9])

_ 12 1/3
9(5)—C1M< 3,37I)+C2t (19)

values of the Prandtl number (as indicated) when a constant wall heat flux
quw is prescribed.

Satisfying the limit condition (18b) givas;, and application
of the far field condition (18c) give§1, namely

31/3
=275 (20a)
C, =313 (20b)

Reverting back to the original similarity variables, one ob-
tains the desired solution

3
pr-t3y (L 2 _Prs
I'(2/3) 373 9

From this one finds the similar wall temperature is equal to

gy =—-n+ (21)

3
= Pr-1/3 =1536117Pr %3

I'(2/3)
Sample temperature profilggn) at the selected values of
Pr are presented in Fig. 3. In Eq. (10) we now h&ye=
qwL/k wheregq,, is the specified wall heat flux. Thus the
corresponding dimensional temperature field is

L(x
k

1/3
L) g

with g(n) given by Eq. (21). For an imposed constant heat
flux, the plate temperature varies as
)l/3

2(0) (22)

T(x,y)=To+ 2= (2 23)

quwL 3%3
T =T —_—
w(X) ot K T(2/3)

X

Pr‘1/3<—

L

(24)

6. Discussion and conclusions

The thermal characteristics of Blasius flow over a hot (or
cold) flat plate are well known (see Schlichting and Gersten
[2, Section 9.3]) and are summarized fBy = const and
qw = const in Table 1 below. At the same downstream loca-
tion, these classical results are compared in Table 1 with the
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Table 1
Comparison of the thermal characteristics of the uniform shear flow and Blasius flow for constant
wall temperature and heat flux, respectively
Uniform shear flow
(present paper)
Lshear= (v/B)Y/?
Constant temperature boundary conditiofis:= const
Nu— Iw@L L“prl/s(f)‘“
k(T — Txo) (/3 L

Blasius flow
(Ref. [2])
Lplasius= v/ Uxo

—-1/2
—g/(O)(%) ;

2p1/2
\/;Pr/, Pr—0

-£'0 = i

0.47Pr1/3, Pr— oo

Constant heat flux boundary conditiogg; = const
1/3

1 KTy -Te) _ | 3 Pr71/3(f) / NG
Nu quwL r/3) L g(0)<z> :

2pp—1/2

g(o)z{\/;Pr /2, Pr—0
1.524Pr =13, Pr— o0

35 T T T )
chosen for our shear driven flow afgs|asius= v/ Us and

Lshear= +/v/B, respectively. In this way, the requirement
Lplasius= Lshearimplies g = U;)’-o/v. Therefore, the Blasius
flow is compared in Table 1 with the shear flow of velocity
u=By=(UZ/v)y.

For constant prescribed wall temperaturg, the suit-
able dimensionless quantity for a physical comparison is the
Nusselt numbeNu, while for constant prescribed wall heat
flux ¢, the physically relevant quantity is the wall tempera-
ture distribution or, in a dimensionless form, the reciprocal
Nusselt number (see Table 1). In both cases essential dif-
ferences occur in the-dependence as well as in tiRe
scaling ofNu and I/Nu, respectively. While in the Blasius
caseNu and 1/Nu scale differently for small and large val-

Nu

Fig. 4. Comparison of the Prandtl number variation of Nusselt number for
uniform shear boundary layer flow (solid lines) and Blasius flow (dashed
lines) with prescribed constant wall temperatdg at three downstream

locationsX = 0.1, 0.5 and 10 when the dimensionless length scales for the

ues ofPr, in the case of uniform shear a universal scaling
law, Pri/3 andPr—1/3, respectively, is found. This is made
clear in Fig. 4 whereéNu is plotted as a function o®r for
three downstream positions = x/L for both the Blasius

two problems are equalglasius= Lshearas explained in the text. and shear flow in the casg, = const (Table 1). Note that

near the leading edge & = 0.1 the Blasius heat transfer

corresponding thermal characteristics of the uniform sheariS greater than that for the shear flow, while the reverse is
flow presented in Sections 4 and 5 above. true far downstream aX = 10. At the intermediate value

It is important to emphasize again that Table 1 compares X = 0.5 the Nusselt numbers for the two flows are nearly
the heat transfer characteristics of fundamentally different equal for all vales of the Prandtl number. However, a small
physical flows. Indeed, whereas the classical Blasius flow difference appears atloRr as it must, owing to the different
is driven over the plate by aimviscid outer flow of ir- Prandtl number scalinggr —1/3 for the uniform shear flow
rotational velocity U = U(x) = const, our uniform shear andPr~/2 for the Blasius flow.
flow is driven by aviscous outer flow ofrotational veloc-
ity U = U(y) = By. The only common physical feature
of these two flows is that neither of them possesses a nat-,
ural characteristic length. Hence, it does not make sense
to compare these two flows with each other, unless one
compares them on the same length sdaléfhe choice of P.D.W. extends his gratitude to Professor Bruno Keller for
the length scale is required in the present context by the his generous hospitality and support as Visiting Professor in
definition of the Nusselt number (see Table 1). The refer- the Department of Building Physics at ETH Zirich during
ence length chosen for the Blasius flow and that already the period of this investigation.
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